/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2024 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "cmsis_os.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "string.h" #include #include "uart_tasks.h" #include "mock_tasks.h" #include "node-red-config.h" #include "adc_buffers.h" #include "meas_tasks.h" #include "peripherial.h" #include "measurements.h" #include "position_task.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ typedef StaticTimer_t osStaticTimerDef_t; /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ ADC_HandleTypeDef hadc1; ADC_HandleTypeDef hadc2; ADC_HandleTypeDef hadc3; DMA_HandleTypeDef hdma_adc1; DMA_HandleTypeDef hdma_adc2; DMA_HandleTypeDef hdma_adc3; COMP_HandleTypeDef hcomp1; CRC_HandleTypeDef hcrc; DAC_HandleTypeDef hdac1; IWDG_HandleTypeDef hiwdg1; RNG_HandleTypeDef hrng; TIM_HandleTypeDef htim1; TIM_HandleTypeDef htim3; TIM_HandleTypeDef htim8; UART_HandleTypeDef huart8; UART_HandleTypeDef huart1; /* Definitions for defaultTask */ osThreadId_t defaultTaskHandle; const osThreadAttr_t defaultTask_attributes = { .name = "defaultTask", .stack_size = 512 * 4, .priority = (osPriority_t) osPriorityNormal, }; /* Definitions for debugLedTimer */ osTimerId_t debugLedTimerHandle; osStaticTimerDef_t debugLedTimerControlBlock; const osTimerAttr_t debugLedTimer_attributes = { .name = "debugLedTimer", .cb_mem = &debugLedTimerControlBlock, .cb_size = sizeof(debugLedTimerControlBlock), }; /* Definitions for fanTimer */ osTimerId_t fanTimerHandle; osStaticTimerDef_t fanTimerControlBlock; const osTimerAttr_t fanTimer_attributes = { .name = "fanTimer", .cb_mem = &fanTimerControlBlock, .cb_size = sizeof(fanTimerControlBlock), }; /* Definitions for motorXTimer */ osTimerId_t motorXTimerHandle; osStaticTimerDef_t motorXTimerControlBlock; const osTimerAttr_t motorXTimer_attributes = { .name = "motorXTimer", .cb_mem = &motorXTimerControlBlock, .cb_size = sizeof(motorXTimerControlBlock), }; /* Definitions for motorYTimer */ osTimerId_t motorYTimerHandle; osStaticTimerDef_t motorYTimerControlBlock; const osTimerAttr_t motorYTimer_attributes = { .name = "motorYTimer", .cb_mem = &motorYTimerControlBlock, .cb_size = sizeof(motorYTimerControlBlock), }; /* USER CODE BEGIN PV */ TIM_OC_InitTypeDef fanTimerConfigOC = { 0 }; TIM_OC_InitTypeDef motorXYTimerConfigOC = { 0 }; extern RESMeasurements resMeasurements; extern SesnorsInfo sensorsInfo; volatile int32_t encoderXChannelA = 0; volatile int32_t encoderXChannelB = 0; volatile int32_t encoderYChannelA = 0; volatile int32_t encoderYChannelB = 0; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); void PeriphCommonClock_Config(void); static void MPU_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_RNG_Init(void); static void MX_USART1_UART_Init(void); static void MX_ADC1_Init(void); static void MX_UART8_Init(void); static void MX_CRC_Init(void); static void MX_ADC2_Init(void); static void MX_ADC3_Init(void); static void MX_TIM1_Init(void); static void MX_TIM3_Init(void); static void MX_DAC1_Init(void); static void MX_COMP1_Init(void); static void MX_TIM8_Init(void); static void MX_IWDG1_Init(void); void StartDefaultTask(void *argument); void debugLedTimerCallback(void *argument); void fanTimerCallback(void *argument); void motorXTimerCallback(void *argument); void motorYTimerCallback(void *argument); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ int __io_putchar(int ch) { #if UART_TASK_LOGS // HAL_UART_Transmit(&huart8, (uint8_t *)&ch, 1, 0xFFFF); // Use UART8 as debug interface ITM_SendChar(ch); // Use SWV as debug interface #endif return ch; } void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { if((GPIO_Pin == GPIO_PIN_14) || (GPIO_Pin == GPIO_PIN_15)) { uint32_t pinStates = ((HAL_GPIO_ReadPin(GPIOD, GPIO_PIN_15) << 1) | HAL_GPIO_ReadPin(GPIOD, GPIO_PIN_14)) & 0x3; osMessageQueuePut(encoderXTaskArg.dataQueue, &pinStates, 0, 0); } else if ((GPIO_Pin == GPIO_PIN_10) || (GPIO_Pin == GPIO_PIN_11)) { uint32_t pinStates = ((HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_11) << 1) | HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_10)) & 0x3; osMessageQueuePut(encoderYTaskArg.dataQueue, &pinStates, 0, 0); } } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MPU Configuration--------------------------------------------------------*/ MPU_Config(); /* Enable the CPU Cache */ /* Enable I-Cache---------------------------------------------------------*/ SCB_EnableICache(); /* Enable D-Cache---------------------------------------------------------*/ SCB_EnableDCache(); /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* Configure the peripherals common clocks */ PeriphCommonClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_RNG_Init(); MX_USART1_UART_Init(); MX_ADC1_Init(); MX_UART8_Init(); MX_CRC_Init(); MX_ADC2_Init(); MX_ADC3_Init(); MX_TIM1_Init(); MX_TIM3_Init(); MX_DAC1_Init(); MX_COMP1_Init(); MX_TIM8_Init(); #ifdef WATCHDOG_ENABLED MX_IWDG1_Init(); #endif /* USER CODE BEGIN 2 */ #ifdef WATCHDOG_ENABLED HAL_IWDG_Refresh(&hiwdg1); #endif /* USER CODE END 2 */ /* Init scheduler */ osKernelInitialize(); /* USER CODE BEGIN RTOS_MUTEX */ /* add mutexes, ... */ /* USER CODE END RTOS_MUTEX */ /* USER CODE BEGIN RTOS_SEMAPHORES */ /* add semaphores, ... */ /* USER CODE END RTOS_SEMAPHORES */ /* Create the timer(s) */ /* creation of debugLedTimer */ debugLedTimerHandle = osTimerNew(debugLedTimerCallback, osTimerOnce, NULL, &debugLedTimer_attributes); /* creation of fanTimer */ fanTimerHandle = osTimerNew(fanTimerCallback, osTimerOnce, NULL, &fanTimer_attributes); /* creation of motorXTimer */ motorXTimerHandle = osTimerNew(motorXTimerCallback, osTimerPeriodic, NULL, &motorXTimer_attributes); /* creation of motorYTimer */ motorYTimerHandle = osTimerNew(motorYTimerCallback, osTimerPeriodic, NULL, &motorYTimer_attributes); /* USER CODE BEGIN RTOS_TIMERS */ /* start timers, add new ones, ... */ /* USER CODE END RTOS_TIMERS */ /* USER CODE BEGIN RTOS_QUEUES */ /* add queues, ... */ /* USER CODE END RTOS_QUEUES */ /* Create the thread(s) */ /* creation of defaultTask */ defaultTaskHandle = osThreadNew(StartDefaultTask, NULL, &defaultTask_attributes); /* USER CODE BEGIN RTOS_THREADS */ /* add threads, ... */ #ifdef WATCHDOG_ENABLED HAL_IWDG_Refresh(&hiwdg1); #endif UartTasksInit(); #ifdef USER_MOCKS MockMeasurmetsTaskInit(); #else MeasTasksInit(); #endif PositionControlTaskInit(); /* USER CODE END RTOS_THREADS */ /* USER CODE BEGIN RTOS_EVENTS */ /* add events, ... */ /* USER CODE END RTOS_EVENTS */ /* Start scheduler */ osKernelStart(); /* We should never get here as control is now taken by the scheduler */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Supply configuration update enable */ HAL_PWREx_ConfigSupply(PWR_LDO_SUPPLY); /** Configure the main internal regulator output voltage */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {} /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI48|RCC_OSCILLATORTYPE_LSI |RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.LSIState = RCC_LSI_ON; RCC_OscInitStruct.HSI48State = RCC_HSI48_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 5; RCC_OscInitStruct.PLL.PLLN = 160; RCC_OscInitStruct.PLL.PLLP = 2; RCC_OscInitStruct.PLL.PLLQ = 2; RCC_OscInitStruct.PLL.PLLR = 2; RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_2; RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE; RCC_OscInitStruct.PLL.PLLFRACN = 0; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2 |RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV2; RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV2; RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV2; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /** * @brief Peripherals Common Clock Configuration * @retval None */ void PeriphCommonClock_Config(void) { RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0}; /** Initializes the peripherals clock */ PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_ADC; PeriphClkInitStruct.PLL2.PLL2M = 5; PeriphClkInitStruct.PLL2.PLL2N = 90; PeriphClkInitStruct.PLL2.PLL2P = 25; PeriphClkInitStruct.PLL2.PLL2Q = 3; PeriphClkInitStruct.PLL2.PLL2R = 2; PeriphClkInitStruct.PLL2.PLL2RGE = RCC_PLL2VCIRANGE_2; PeriphClkInitStruct.PLL2.PLL2VCOSEL = RCC_PLL2VCOWIDE; PeriphClkInitStruct.PLL2.PLL2FRACN = 0; PeriphClkInitStruct.AdcClockSelection = RCC_ADCCLKSOURCE_PLL2; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) { Error_Handler(); } } /** * @brief ADC1 Initialization Function * @param None * @retval None */ static void MX_ADC1_Init(void) { /* USER CODE BEGIN ADC1_Init 0 */ /* USER CODE END ADC1_Init 0 */ ADC_MultiModeTypeDef multimode = {0}; ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC1_Init 1 */ /* USER CODE END ADC1_Init 1 */ /** Common config */ hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1; hadc1.Init.Resolution = ADC_RESOLUTION_16B; hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE; hadc1.Init.EOCSelection = ADC_EOC_SEQ_CONV; hadc1.Init.LowPowerAutoWait = DISABLE; hadc1.Init.ContinuousConvMode = ENABLE; hadc1.Init.NbrOfConversion = 7; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIG_T8_TRGO; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING; hadc1.Init.ConversionDataManagement = ADC_CONVERSIONDATA_DMA_ONESHOT; hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED; hadc1.Init.LeftBitShift = ADC_LEFTBITSHIFT_NONE; hadc1.Init.OversamplingMode = DISABLE; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } /** Configure the ADC multi-mode */ multimode.Mode = ADC_DUALMODE_REGSIMULT; multimode.DualModeData = ADC_DUALMODEDATAFORMAT_32_10_BITS; multimode.TwoSamplingDelay = ADC_TWOSAMPLINGDELAY_1CYCLE; if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_8; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; sConfig.SingleDiff = ADC_SINGLE_ENDED; sConfig.OffsetNumber = ADC_OFFSET_NONE; sConfig.Offset = 0; sConfig.OffsetSignedSaturation = DISABLE; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_9; sConfig.Rank = ADC_REGULAR_RANK_2; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_7; sConfig.Rank = ADC_REGULAR_RANK_3; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_16; sConfig.Rank = ADC_REGULAR_RANK_4; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_17; sConfig.Rank = ADC_REGULAR_RANK_5; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_14; sConfig.Rank = ADC_REGULAR_RANK_6; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_15; sConfig.Rank = ADC_REGULAR_RANK_7; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC1_Init 2 */ if (HAL_ADCEx_Calibration_Start(&hadc1, ADC_CALIB_OFFSET_LINEARITY, ADC_SINGLE_ENDED) != HAL_OK) { Error_Handler(); } /* USER CODE END ADC1_Init 2 */ } /** * @brief ADC2 Initialization Function * @param None * @retval None */ static void MX_ADC2_Init(void) { /* USER CODE BEGIN ADC2_Init 0 */ /* USER CODE END ADC2_Init 0 */ ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC2_Init 1 */ /* USER CODE END ADC2_Init 1 */ /** Common config */ hadc2.Instance = ADC2; hadc2.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1; hadc2.Init.Resolution = ADC_RESOLUTION_16B; hadc2.Init.ScanConvMode = ADC_SCAN_ENABLE; hadc2.Init.EOCSelection = ADC_EOC_SEQ_CONV; hadc2.Init.LowPowerAutoWait = DISABLE; hadc2.Init.ContinuousConvMode = ENABLE; hadc2.Init.NbrOfConversion = 3; hadc2.Init.DiscontinuousConvMode = DISABLE; hadc2.Init.ConversionDataManagement = ADC_CONVERSIONDATA_DMA_ONESHOT; hadc2.Init.Overrun = ADC_OVR_DATA_PRESERVED; hadc2.Init.LeftBitShift = ADC_LEFTBITSHIFT_NONE; hadc2.Init.OversamplingMode = DISABLE; if (HAL_ADC_Init(&hadc2) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_3; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; sConfig.SingleDiff = ADC_SINGLE_ENDED; sConfig.OffsetNumber = ADC_OFFSET_NONE; sConfig.Offset = 0; sConfig.OffsetSignedSaturation = DISABLE; if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_4; sConfig.Rank = ADC_REGULAR_RANK_2; if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_5; sConfig.Rank = ADC_REGULAR_RANK_3; if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC2_Init 2 */ if (HAL_ADCEx_Calibration_Start(&hadc2, ADC_CALIB_OFFSET_LINEARITY, ADC_SINGLE_ENDED) != HAL_OK) { Error_Handler(); } /* USER CODE END ADC2_Init 2 */ } /** * @brief ADC3 Initialization Function * @param None * @retval None */ static void MX_ADC3_Init(void) { /* USER CODE BEGIN ADC3_Init 0 */ /* USER CODE END ADC3_Init 0 */ ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC3_Init 1 */ /* USER CODE END ADC3_Init 1 */ /** Common config */ hadc3.Instance = ADC3; hadc3.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1; hadc3.Init.Resolution = ADC_RESOLUTION_16B; hadc3.Init.ScanConvMode = ADC_SCAN_ENABLE; hadc3.Init.EOCSelection = ADC_EOC_SEQ_CONV; hadc3.Init.LowPowerAutoWait = DISABLE; hadc3.Init.ContinuousConvMode = ENABLE; hadc3.Init.NbrOfConversion = 5; hadc3.Init.DiscontinuousConvMode = DISABLE; hadc3.Init.ExternalTrigConv = ADC_EXTERNALTRIG_T8_TRGO; hadc3.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING; hadc3.Init.ConversionDataManagement = ADC_CONVERSIONDATA_DMA_ONESHOT; hadc3.Init.Overrun = ADC_OVR_DATA_PRESERVED; hadc3.Init.LeftBitShift = ADC_LEFTBITSHIFT_NONE; hadc3.Init.OversamplingMode = DISABLE; if (HAL_ADC_Init(&hadc3) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_0; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_387CYCLES_5; sConfig.SingleDiff = ADC_SINGLE_ENDED; sConfig.OffsetNumber = ADC_OFFSET_NONE; sConfig.Offset = 0; sConfig.OffsetSignedSaturation = DISABLE; if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_1; sConfig.Rank = ADC_REGULAR_RANK_2; if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_10; sConfig.Rank = ADC_REGULAR_RANK_3; if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_11; sConfig.Rank = ADC_REGULAR_RANK_4; if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_VREFINT; sConfig.Rank = ADC_REGULAR_RANK_5; if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC3_Init 2 */ if (HAL_ADCEx_Calibration_Start(&hadc3, ADC_CALIB_OFFSET_LINEARITY, ADC_SINGLE_ENDED) != HAL_OK) { Error_Handler(); } /* USER CODE END ADC3_Init 2 */ } /** * @brief COMP1 Initialization Function * @param None * @retval None */ static void MX_COMP1_Init(void) { /* USER CODE BEGIN COMP1_Init 0 */ /* USER CODE END COMP1_Init 0 */ /* USER CODE BEGIN COMP1_Init 1 */ /* USER CODE END COMP1_Init 1 */ hcomp1.Instance = COMP1; hcomp1.Init.InvertingInput = COMP_INPUT_MINUS_3_4VREFINT; hcomp1.Init.NonInvertingInput = COMP_INPUT_PLUS_IO2; hcomp1.Init.OutputPol = COMP_OUTPUTPOL_NONINVERTED; hcomp1.Init.Hysteresis = COMP_HYSTERESIS_NONE; hcomp1.Init.BlankingSrce = COMP_BLANKINGSRC_NONE; hcomp1.Init.Mode = COMP_POWERMODE_HIGHSPEED; hcomp1.Init.WindowMode = COMP_WINDOWMODE_DISABLE; hcomp1.Init.TriggerMode = COMP_TRIGGERMODE_NONE; if (HAL_COMP_Init(&hcomp1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN COMP1_Init 2 */ /* USER CODE END COMP1_Init 2 */ } /** * @brief CRC Initialization Function * @param None * @retval None */ static void MX_CRC_Init(void) { /* USER CODE BEGIN CRC_Init 0 */ /* USER CODE END CRC_Init 0 */ /* USER CODE BEGIN CRC_Init 1 */ /* USER CODE END CRC_Init 1 */ hcrc.Instance = CRC; hcrc.Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_DISABLE; hcrc.Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_ENABLE; hcrc.Init.GeneratingPolynomial = 4129; hcrc.Init.CRCLength = CRC_POLYLENGTH_16B; hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_NONE; hcrc.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE; hcrc.InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES; if (HAL_CRC_Init(&hcrc) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN CRC_Init 2 */ /* USER CODE END CRC_Init 2 */ } /** * @brief DAC1 Initialization Function * @param None * @retval None */ static void MX_DAC1_Init(void) { /* USER CODE BEGIN DAC1_Init 0 */ /* USER CODE END DAC1_Init 0 */ DAC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN DAC1_Init 1 */ /* USER CODE END DAC1_Init 1 */ /** DAC Initialization */ hdac1.Instance = DAC1; if (HAL_DAC_Init(&hdac1) != HAL_OK) { Error_Handler(); } /** DAC channel OUT1 config */ sConfig.DAC_SampleAndHold = DAC_SAMPLEANDHOLD_DISABLE; sConfig.DAC_Trigger = DAC_TRIGGER_NONE; sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; sConfig.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_DISABLE; sConfig.DAC_UserTrimming = DAC_TRIMMING_FACTORY; if (HAL_DAC_ConfigChannel(&hdac1, &sConfig, DAC_CHANNEL_1) != HAL_OK) { Error_Handler(); } /** DAC channel OUT2 config */ if (HAL_DAC_ConfigChannel(&hdac1, &sConfig, DAC_CHANNEL_2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN DAC1_Init 2 */ /* USER CODE END DAC1_Init 2 */ } /** * @brief IWDG1 Initialization Function * @param None * @retval None */ static void MX_IWDG1_Init(void) { /* USER CODE BEGIN IWDG1_Init 0 */ /* USER CODE END IWDG1_Init 0 */ /* USER CODE BEGIN IWDG1_Init 1 */ /* USER CODE END IWDG1_Init 1 */ hiwdg1.Instance = IWDG1; hiwdg1.Init.Prescaler = IWDG_PRESCALER_64; hiwdg1.Init.Window = 249; hiwdg1.Init.Reload = 249; if (HAL_IWDG_Init(&hiwdg1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN IWDG1_Init 2 */ /* USER CODE END IWDG1_Init 2 */ } /** * @brief RNG Initialization Function * @param None * @retval None */ static void MX_RNG_Init(void) { /* USER CODE BEGIN RNG_Init 0 */ /* USER CODE END RNG_Init 0 */ /* USER CODE BEGIN RNG_Init 1 */ /* USER CODE END RNG_Init 1 */ hrng.Instance = RNG; hrng.Init.ClockErrorDetection = RNG_CED_ENABLE; if (HAL_RNG_Init(&hrng) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN RNG_Init 2 */ /* USER CODE END RNG_Init 2 */ } /** * @brief TIM1 Initialization Function * @param None * @retval None */ static void MX_TIM1_Init(void) { /* USER CODE BEGIN TIM1_Init 0 */ /* USER CODE END TIM1_Init 0 */ TIM_MasterConfigTypeDef sMasterConfig = {0}; TIM_OC_InitTypeDef sConfigOC = {0}; TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0}; /* USER CODE BEGIN TIM1_Init 1 */ /* USER CODE END TIM1_Init 1 */ htim1.Instance = TIM1; htim1.Init.Prescaler = 199; htim1.Init.CounterMode = TIM_COUNTERMODE_UP; htim1.Init.Period = 999; htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim1.Init.RepetitionCounter = 0; htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; if (HAL_TIM_PWM_Init(&htim1) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK) { Error_Handler(); } sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 99; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET; sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET; if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_2) != HAL_OK) { Error_Handler(); } sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE; sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE; sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF; sBreakDeadTimeConfig.DeadTime = 0; sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE; sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_HIGH; sBreakDeadTimeConfig.BreakFilter = 0; sBreakDeadTimeConfig.Break2State = TIM_BREAK2_DISABLE; sBreakDeadTimeConfig.Break2Polarity = TIM_BREAK2POLARITY_HIGH; sBreakDeadTimeConfig.Break2Filter = 0; sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE; if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM1_Init 2 */ memcpy(&fanTimerConfigOC, &sConfigOC, sizeof(TIM_OC_InitTypeDef)); /* USER CODE END TIM1_Init 2 */ HAL_TIM_MspPostInit(&htim1); } /** * @brief TIM3 Initialization Function * @param None * @retval None */ static void MX_TIM3_Init(void) { /* USER CODE BEGIN TIM3_Init 0 */ /* USER CODE END TIM3_Init 0 */ TIM_MasterConfigTypeDef sMasterConfig = {0}; TIM_OC_InitTypeDef sConfigOC = {0}; /* USER CODE BEGIN TIM3_Init 1 */ /* USER CODE END TIM3_Init 1 */ htim3.Instance = TIM3; htim3.Init.Prescaler = 199; htim3.Init.CounterMode = TIM_COUNTERMODE_UP; htim3.Init.Period = 999; htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; if (HAL_TIM_PWM_Init(&htim3) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK) { Error_Handler(); } sConfigOC.OCMode = TIM_OCMODE_COMBINED_PWM1; sConfigOC.Pulse = 500; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_1) != HAL_OK) { Error_Handler(); } __HAL_TIM_DISABLE_OCxPRELOAD(&htim3, TIM_CHANNEL_1); sConfigOC.OCMode = TIM_OCMODE_PWM1; if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_2) != HAL_OK) { Error_Handler(); } __HAL_TIM_DISABLE_OCxPRELOAD(&htim3, TIM_CHANNEL_2); if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_3) != HAL_OK) { Error_Handler(); } __HAL_TIM_DISABLE_OCxPRELOAD(&htim3, TIM_CHANNEL_3); if (HAL_TIM_PWM_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_4) != HAL_OK) { Error_Handler(); } __HAL_TIM_DISABLE_OCxPRELOAD(&htim3, TIM_CHANNEL_4); /* USER CODE BEGIN TIM3_Init 2 */ memcpy(&motorXYTimerConfigOC, &sConfigOC, sizeof(TIM_OC_InitTypeDef)); /* USER CODE END TIM3_Init 2 */ HAL_TIM_MspPostInit(&htim3); } /** * @brief TIM8 Initialization Function * @param None * @retval None */ static void MX_TIM8_Init(void) { /* USER CODE BEGIN TIM8_Init 0 */ /* USER CODE END TIM8_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM8_Init 1 */ /* USER CODE END TIM8_Init 1 */ htim8.Instance = TIM8; htim8.Init.Prescaler = 0; htim8.Init.CounterMode = TIM_COUNTERMODE_UP; htim8.Init.Period = 1999; htim8.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim8.Init.RepetitionCounter = 0; htim8.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; if (HAL_TIM_Base_Init(&htim8) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim8, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE; sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_ENABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim8, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM8_Init 2 */ /* USER CODE END TIM8_Init 2 */ } /** * @brief UART8 Initialization Function * @param None * @retval None */ static void MX_UART8_Init(void) { /* USER CODE BEGIN UART8_Init 0 */ /* USER CODE END UART8_Init 0 */ /* USER CODE BEGIN UART8_Init 1 */ /* USER CODE END UART8_Init 1 */ huart8.Instance = UART8; huart8.Init.BaudRate = 115200; huart8.Init.WordLength = UART_WORDLENGTH_8B; huart8.Init.StopBits = UART_STOPBITS_1; huart8.Init.Parity = UART_PARITY_NONE; huart8.Init.Mode = UART_MODE_TX_RX; huart8.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart8.Init.OverSampling = UART_OVERSAMPLING_16; huart8.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart8.Init.ClockPrescaler = UART_PRESCALER_DIV1; huart8.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetTxFifoThreshold(&huart8, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetRxFifoThreshold(&huart8, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_DisableFifoMode(&huart8) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN UART8_Init 2 */ /* USER CODE END UART8_Init 2 */ } /** * @brief USART1 Initialization Function * @param None * @retval None */ static void MX_USART1_UART_Init(void) { /* USER CODE BEGIN USART1_Init 0 */ /* USER CODE END USART1_Init 0 */ /* USER CODE BEGIN USART1_Init 1 */ /* USER CODE END USART1_Init 1 */ huart1.Instance = USART1; huart1.Init.BaudRate = 115200; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart1.Init.ClockPrescaler = UART_PRESCALER_DIV1; huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_TXINVERT_INIT; huart1.AdvancedInit.TxPinLevelInvert = UART_ADVFEATURE_TXINV_ENABLE; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetTxFifoThreshold(&huart1, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetRxFifoThreshold(&huart1, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_DisableFifoMode(&huart1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART1_Init 2 */ /* USER CODE END USART1_Init 2 */ } /** * Enable DMA controller clock */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMA1_CLK_ENABLE(); /* DMA interrupt init */ /* DMA1_Stream0_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Stream0_IRQn, 5, 0); HAL_NVIC_EnableIRQ(DMA1_Stream0_IRQn); /* DMA1_Stream1_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Stream1_IRQn, 5, 0); HAL_NVIC_EnableIRQ(DMA1_Stream1_IRQn); /* DMA1_Stream2_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Stream2_IRQn, 5, 0); HAL_NVIC_EnableIRQ(DMA1_Stream2_IRQn); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* USER CODE BEGIN MX_GPIO_Init_1 */ /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOE_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOE, GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_10 |GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOD, GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7, GPIO_PIN_RESET); /*Configure GPIO pins : PE7 PE8 PE9 PE10 PE13 PE14 PE15 */ GPIO_InitStruct.Pin = GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_10 |GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOE, &GPIO_InitStruct); /*Configure GPIO pins : PB10 PB11 */ GPIO_InitStruct.Pin = GPIO_PIN_10|GPIO_PIN_11; GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pins : PD8 PD9 PD10 PD11 PD12 PD13 PD3 */ GPIO_InitStruct.Pin = GPIO_PIN_8|GPIO_PIN_9|GPIO_PIN_10|GPIO_PIN_11 |GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_3; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); /*Configure GPIO pins : PD14 PD15 */ GPIO_InitStruct.Pin = GPIO_PIN_14|GPIO_PIN_15; GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); /*Configure GPIO pins : PD4 PD5 PD6 PD7 */ GPIO_InitStruct.Pin = GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); /* EXTI interrupt init*/ HAL_NVIC_SetPriority(EXTI15_10_IRQn, 5, 0); HAL_NVIC_EnableIRQ(EXTI15_10_IRQn); /* USER CODE BEGIN MX_GPIO_Init_2 */ /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc) { if(hadc->Instance == ADC1) { DbgLEDToggle(DBG_LED4); SCB_InvalidateDCache_by_Addr((uint32_t*)(((uint32_t)adc1Data.adcDataBuffer) & ~(uint32_t)0x1F), __SCB_DCACHE_LINE_SIZE); if(adc1MeasDataQueue != NULL) { osMessageQueuePut(adc1MeasDataQueue, &adc1Data, 0, 0); } if(HAL_ADCEx_MultiModeStart_DMA(&hadc1, (uint32_t *)adc1Data.adcDataBuffer, ADC1LastData*sizeof(uint16_t)) != HAL_OK) { Error_Handler(); } } if(hadc->Instance == ADC3) { SCB_InvalidateDCache_by_Addr((uint32_t*)(((uint32_t)adc3Data.adcDataBuffer) & ~(uint32_t)0x1F), __SCB_DCACHE_LINE_SIZE); if(adc3MeasDataQueue != NULL) { osMessageQueuePut(adc3MeasDataQueue, &adc3Data, 0, 0); } if(HAL_ADC_Start_DMA(&hadc3, (uint32_t *)adc3Data.adcDataBuffer, ADC3LastData*sizeof(uint16_t)) != HAL_OK) { Error_Handler(); } } osTimerStop (debugLedTimerHandle); } /* USER CODE END 4 */ /* USER CODE BEGIN Header_StartDefaultTask */ /** * @brief Function implementing the defaultTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartDefaultTask */ void StartDefaultTask(void *argument) { /* USER CODE BEGIN 5 */ #ifdef WATCHDOG_ENABLED HAL_IWDG_Refresh(&hiwdg1); #endif SelectCurrentSensorGain(CurrentSensorL1, csGain3); SelectCurrentSensorGain(CurrentSensorL2, csGain3); SelectCurrentSensorGain(CurrentSensorL3, csGain3); EnableCurrentSensors(); osDelay(pdMS_TO_TICKS(100)); #ifdef WATCHDOG_ENABLED HAL_IWDG_Refresh(&hiwdg1); #endif if(HAL_TIM_Base_Start(&htim8) != HAL_OK) { Error_Handler(); } if(HAL_ADCEx_MultiModeStart_DMA(&hadc1, (uint32_t *)adc1Data.adcDataBuffer, ADC1LastData*sizeof(uint16_t)) != HAL_OK) { Error_Handler(); } if(HAL_ADC_Start_DMA(&hadc3, (uint32_t *)adc3Data.adcDataBuffer, ADC3LastData*sizeof(uint16_t)) != HAL_OK) { Error_Handler(); } HAL_COMP_Start(&hcomp1); #ifdef WATCHDOG_ENABLED HAL_IWDG_Refresh(&hiwdg1); #endif /* Infinite loop */ for(;;) { osDelay(pdMS_TO_TICKS(100)); #ifdef WATCHDOG_ENABLED HAL_IWDG_Refresh(&hiwdg1); #endif if(HAL_TIM_GetChannelState(&htim3, TIM_CHANNEL_1) == HAL_TIM_CHANNEL_STATE_READY && HAL_TIM_GetChannelState(&htim3, TIM_CHANNEL_2) == HAL_TIM_CHANNEL_STATE_READY) { if(osMutexAcquire(sensorsInfoMutex, osWaitForever) == osOK) { sensorsInfo.motorXStatus = 0; osMutexRelease(sensorsInfoMutex); } } if(HAL_TIM_GetChannelState(&htim3, TIM_CHANNEL_3) == HAL_TIM_CHANNEL_STATE_READY && HAL_TIM_GetChannelState(&htim3, TIM_CHANNEL_4) == HAL_TIM_CHANNEL_STATE_READY) { if(osMutexAcquire(sensorsInfoMutex, osWaitForever) == osOK) { sensorsInfo.motorYStatus = 0; osMutexRelease(sensorsInfoMutex); } } } /* USER CODE END 5 */ } /* debugLedTimerCallback function */ void debugLedTimerCallback(void *argument) { /* USER CODE BEGIN debugLedTimerCallback */ DbgLEDOff (DBG_LED1); /* USER CODE END debugLedTimerCallback */ } /* fanTimerCallback function */ void fanTimerCallback(void *argument) { /* USER CODE BEGIN fanTimerCallback */ HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_2); /* USER CODE END fanTimerCallback */ } /* motorXTimerCallback function */ void motorXTimerCallback(void *argument) { /* USER CODE BEGIN motorXTimerCallback */ MotorAction(&htim3, &motorXYTimerConfigOC, TIM_CHANNEL_1, TIM_CHANNEL_2, HiZ, 0); HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_1); HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_2); /* USER CODE END motorXTimerCallback */ } /* motorYTimerCallback function */ void motorYTimerCallback(void *argument) { /* USER CODE BEGIN motorYTimerCallback */ MotorAction(&htim3, &motorXYTimerConfigOC, TIM_CHANNEL_3, TIM_CHANNEL_4, HiZ, 0); HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_3); HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_4); /* USER CODE END motorYTimerCallback */ } /* MPU Configuration */ void MPU_Config(void) { MPU_Region_InitTypeDef MPU_InitStruct = {0}; /* Disables the MPU */ HAL_MPU_Disable(); /** Initializes and configures the Region and the memory to be protected */ MPU_InitStruct.Enable = MPU_REGION_ENABLE; MPU_InitStruct.Number = MPU_REGION_NUMBER0; MPU_InitStruct.BaseAddress = 0x0; MPU_InitStruct.Size = MPU_REGION_SIZE_4GB; MPU_InitStruct.SubRegionDisable = 0x87; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.AccessPermission = MPU_REGION_NO_ACCESS; MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_DISABLE; MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE; MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE; MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /** Initializes and configures the Region and the memory to be protected */ MPU_InitStruct.Number = MPU_REGION_NUMBER1; MPU_InitStruct.BaseAddress = 0x24020000; MPU_InitStruct.Size = MPU_REGION_SIZE_128KB; MPU_InitStruct.SubRegionDisable = 0x0; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL1; MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS; MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /** Initializes and configures the Region and the memory to be protected */ MPU_InitStruct.Number = MPU_REGION_NUMBER2; MPU_InitStruct.BaseAddress = 0x24040000; MPU_InitStruct.Size = MPU_REGION_SIZE_512B; MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0; MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE; MPU_InitStruct.IsBufferable = MPU_ACCESS_BUFFERABLE; HAL_MPU_ConfigRegion(&MPU_InitStruct); /* Enables the MPU */ HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT); } /** * @brief Period elapsed callback in non blocking mode * @note This function is called when TIM6 interrupt took place, inside * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment * a global variable "uwTick" used as application time base. * @param htim : TIM handle * @retval None */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { /* USER CODE BEGIN Callback 0 */ /* USER CODE END Callback 0 */ if (htim->Instance == TIM6) { HAL_IncTick(); } /* USER CODE BEGIN Callback 1 */ else if (htim->Instance == TIM4) { encoderXChannelA = 0; encoderXChannelB = 0; } else if (htim->Instance == TIM2) { encoderYChannelA = 0; encoderYChannelB = 0; } /* USER CODE END Callback 1 */ } /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); NVIC_SystemReset(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */