meas_tasks.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371
  1. /*
  2. * meas_tasks.c
  3. *
  4. * Created on: Sep 5, 2024
  5. * Author: jakubski
  6. */
  7. #include <math.h>
  8. #include "meas_tasks.h"
  9. #include "adc_buffers.h"
  10. #include "measurements.h"
  11. #include "node-red-config.h"
  12. #include "peripherial.h"
  13. #include "cmsis_os.h"
  14. #include "main.h"
  15. #ifdef PV_BOARD
  16. #define VOLTAGES_COUNT 1
  17. #define CURRENTS_COUNT 1
  18. #else
  19. #define VOLTAGES_COUNT 3
  20. #define CURRENTS_COUNT 3
  21. #endif
  22. #define CIRC_BUFF_LEN 10
  23. osThreadId_t adc1MeasTaskHandle = NULL;
  24. osThreadId_t adc2MeasTaskHandle = NULL;
  25. osThreadId_t adc3MeasTaskHandle = NULL;
  26. osThreadId_t limiterSwitchTaskHandle = NULL;
  27. osThreadId_t encoderTaskHandle = NULL;
  28. osMessageQueueId_t adc1MeasDataQueue = NULL;
  29. osMessageQueueId_t adc2MeasDataQueue = NULL;
  30. osMessageQueueId_t adc3MeasDataQueue = NULL;
  31. osMessageQueueId_t limiterSwitchDataQueue = NULL;
  32. osMessageQueueId_t encoderDataQueue = NULL;
  33. osMutexId_t vRefmVMutex;
  34. osMutexId_t resMeasurementsMutex;
  35. osMutexId_t sensorsInfoMutex;
  36. osMutexId_t ILxRefMutex;
  37. volatile uint32_t vRefmV = 3000;
  38. RESMeasurements resMeasurements = { 0 };
  39. SesnorsInfo sensorsInfo = { 0 };
  40. uint16_t ILxRef[CURRENTS_COUNT] = { 0 };
  41. extern TIM_HandleTypeDef htim3;
  42. extern TIM_OC_InitTypeDef motorXYTimerConfigOC;
  43. extern osTimerId_t motorXTimerHandle;
  44. extern osTimerId_t motorYTimerHandle;
  45. //extern osMutexId_t positionSettingMutex;
  46. void MeasTasksInit (void) {
  47. vRefmVMutex = osMutexNew (NULL);
  48. resMeasurementsMutex = osMutexNew (NULL);
  49. sensorsInfoMutex = osMutexNew (NULL);
  50. ILxRefMutex = osMutexNew (NULL);
  51. adc1MeasDataQueue = osMessageQueueNew (8, sizeof (ADC1_Data), NULL);
  52. adc2MeasDataQueue = osMessageQueueNew (8, sizeof (ADC2_Data), NULL);
  53. adc3MeasDataQueue = osMessageQueueNew (8, sizeof (ADC3_Data), NULL);
  54. osThreadAttr_t osThreadAttradc1MeasTask = { 0 };
  55. osThreadAttr_t osThreadAttradc2MeasTask = { 0 };
  56. osThreadAttr_t osThreadAttradc3MeasTask = { 0 };
  57. osThreadAttradc1MeasTask.stack_size = configMINIMAL_STACK_SIZE * 2;
  58. osThreadAttradc1MeasTask.priority = (osPriority_t)osPriorityRealtime;
  59. osThreadAttradc2MeasTask.stack_size = configMINIMAL_STACK_SIZE * 2;
  60. osThreadAttradc2MeasTask.priority = (osPriority_t)osPriorityRealtime;
  61. osThreadAttradc3MeasTask.stack_size = configMINIMAL_STACK_SIZE * 2;
  62. osThreadAttradc3MeasTask.priority = (osPriority_t)osPriorityNormal;
  63. adc1MeasTaskHandle = osThreadNew (ADC1MeasTask, NULL, &osThreadAttradc1MeasTask);
  64. adc2MeasTaskHandle = osThreadNew (ADC2MeasTask, NULL, &osThreadAttradc2MeasTask);
  65. adc3MeasTaskHandle = osThreadNew (ADC3MeasTask, NULL, &osThreadAttradc3MeasTask);
  66. limiterSwitchDataQueue = osMessageQueueNew (8, sizeof (LimiterSwitchData), NULL);
  67. osThreadAttr_t osThreadAttradc1LimiterSwitchTask = { 0 };
  68. osThreadAttradc1LimiterSwitchTask.stack_size = configMINIMAL_STACK_SIZE * 2;
  69. osThreadAttradc1LimiterSwitchTask.priority = (osPriority_t)osPriorityNormal;
  70. limiterSwitchTaskHandle = osThreadNew (LimiterSwitchTask, NULL, &osThreadAttradc1LimiterSwitchTask);
  71. encoderDataQueue = osMessageQueueNew (16, sizeof (EncoderData), NULL);
  72. osThreadAttr_t osThreadAttrEncoderTask = { 0 };
  73. osThreadAttrEncoderTask.stack_size = configMINIMAL_STACK_SIZE * 2;
  74. osThreadAttrEncoderTask.priority = (osPriority_t)osPriorityNormal;
  75. encoderTaskHandle = osThreadNew (EncoderTask, encoderDataQueue, &osThreadAttrEncoderTask);
  76. }
  77. void ADC1MeasTask (void* arg) {
  78. float circBuffer[VOLTAGES_COUNT][CIRC_BUFF_LEN] = { 0 };
  79. float rms[VOLTAGES_COUNT] = { 0 };
  80. ;
  81. ADC1_Data adcData = { 0 };
  82. uint32_t circBuffPos = 0;
  83. float gainCorrection = 1.0;
  84. while (pdTRUE) {
  85. osMessageQueueGet (adc1MeasDataQueue, &adcData, 0, osWaitForever);
  86. #ifdef GAIN_AUTO_CORRECTION
  87. if (osMutexAcquire (vRefmVMutex, osWaitForever) == osOK) {
  88. gainCorrection = (float)vRefmV;
  89. osMutexRelease (vRefmVMutex);
  90. }
  91. gainCorrection = gainCorrection / EXT_VREF_mV;
  92. #endif
  93. for (uint8_t i = 0; i < VOLTAGES_COUNT; i++) {
  94. float val = adcData.adcDataBuffer[i] * deltaADC * U_CHANNEL_CONST * gainCorrection * U_MeasCorrectionData[i].gain + U_MeasCorrectionData[i].offset;
  95. circBuffer[i][circBuffPos] = val;
  96. rms[i] = 0.0;
  97. for (uint8_t c = 0; c < CIRC_BUFF_LEN; c++) {
  98. rms[i] += circBuffer[i][c];
  99. }
  100. rms[i] = rms[i] / CIRC_BUFF_LEN;
  101. if (osMutexAcquire (resMeasurementsMutex, osWaitForever) == osOK) {
  102. if (fabs (resMeasurements.voltagePeak[i]) < fabs (val)) {
  103. resMeasurements.voltagePeak[i] = val;
  104. }
  105. resMeasurements.voltageRMS[i] = rms[i];
  106. resMeasurements.power[i] = resMeasurements.voltageRMS[i] * resMeasurements.currentRMS[i];
  107. osMutexRelease (resMeasurementsMutex);
  108. }
  109. }
  110. ++circBuffPos;
  111. circBuffPos = circBuffPos % CIRC_BUFF_LEN;
  112. if (osMutexAcquire (ILxRefMutex, osWaitForever) == osOK) {
  113. uint8_t refIdx = 0;
  114. for (uint8_t i = (uint8_t)IL1Ref; i <= (uint8_t)IL3Ref; i++) {
  115. ILxRef[refIdx++] = adcData.adcDataBuffer[i];
  116. }
  117. osMutexRelease (ILxRefMutex);
  118. }
  119. float fanFBVoltage = adcData.adcDataBuffer[FanFB] * deltaADC * -4.35 + 12;
  120. if (osMutexAcquire (sensorsInfoMutex, osWaitForever) == osOK) {
  121. sensorsInfo.fanVoltage = fanFBVoltage;
  122. osMutexRelease (sensorsInfoMutex);
  123. }
  124. }
  125. }
  126. void ADC2MeasTask (void* arg) {
  127. float circBuffer[CURRENTS_COUNT][CIRC_BUFF_LEN] = { 0 };
  128. float rms[CURRENTS_COUNT] = { 0 };
  129. ADC2_Data adcData = { 0 };
  130. uint32_t circBuffPos = 0;
  131. float gainCorrection = 1.0;
  132. while (pdTRUE) {
  133. osMessageQueueGet (adc2MeasDataQueue, &adcData, 0, osWaitForever);
  134. if (osMutexAcquire (vRefmVMutex, osWaitForever) == osOK) {
  135. gainCorrection = (float)vRefmV;
  136. osMutexRelease (vRefmVMutex);
  137. }
  138. gainCorrection = gainCorrection / EXT_VREF_mV;
  139. float ref[CURRENTS_COUNT] = { 0 };
  140. if (osMutexAcquire (ILxRefMutex, osWaitForever) == osOK) {
  141. for (uint8_t i = 0; i < CURRENTS_COUNT; i++) {
  142. ref[i] = (float)ILxRef[i];
  143. }
  144. osMutexRelease (ILxRefMutex);
  145. }
  146. for (uint8_t i = 0; i < CURRENTS_COUNT; i++) {
  147. float adcVal = (float)adcData.adcDataBuffer[i];
  148. float val = (adcVal - ref[i]) * deltaADC * I_CHANNEL_CONST * gainCorrection * I_MeasCorrectionData[i].gain + I_MeasCorrectionData[i].offset;
  149. circBuffer[i][circBuffPos] = val;
  150. rms[i] = 0.0;
  151. for (uint8_t c = 0; c < CIRC_BUFF_LEN; c++) {
  152. rms[i] += circBuffer[i][c];
  153. }
  154. rms[i] = rms[i] / CIRC_BUFF_LEN;
  155. if (osMutexAcquire (resMeasurementsMutex, osWaitForever) == osOK) {
  156. if (resMeasurements.currentPeak[i] < val) {
  157. resMeasurements.currentPeak[i] = val;
  158. }
  159. resMeasurements.currentRMS[i] = rms[i];
  160. osMutexRelease (resMeasurementsMutex);
  161. }
  162. }
  163. ++circBuffPos;
  164. circBuffPos = circBuffPos % CIRC_BUFF_LEN;
  165. }
  166. }
  167. void ADC3MeasTask (void* arg) {
  168. float motorXSensCircBuffer[CIRC_BUFF_LEN] = { 0 };
  169. float motorYSensCircBuffer[CIRC_BUFF_LEN] = { 0 };
  170. float pvT1CircBuffer[CIRC_BUFF_LEN] = { 0 };
  171. float pvT2CircBuffer[CIRC_BUFF_LEN] = { 0 };
  172. uint32_t circBuffPos = 0;
  173. ADC3_Data adcData = { 0 };
  174. while (pdTRUE) {
  175. osMessageQueueGet (adc3MeasDataQueue, &adcData, 0, osWaitForever);
  176. uint32_t vRef = __LL_ADC_CALC_VREFANALOG_VOLTAGE (adcData.adcDataBuffer[VrefInt], LL_ADC_RESOLUTION_16B);
  177. if (osMutexAcquire (vRefmVMutex, osWaitForever) == osOK) {
  178. vRefmV = vRef;
  179. osMutexRelease (vRefmVMutex);
  180. }
  181. float motorXCurrentSense = adcData.adcDataBuffer[motorXSense] * deltaADC * 10 / 8.33333;
  182. float motorYCurrentSense = adcData.adcDataBuffer[motorYSense] * deltaADC * 10 / 8.33333;
  183. motorXSensCircBuffer[circBuffPos] = motorXCurrentSense;
  184. motorYSensCircBuffer[circBuffPos] = motorYCurrentSense;
  185. pvT1CircBuffer[circBuffPos] = adcData.adcDataBuffer[pvTemp1] * deltaADC * 45.33333333 - 63;
  186. pvT2CircBuffer[circBuffPos] = adcData.adcDataBuffer[pvTemp2] * deltaADC * 45.33333333 - 63;
  187. float motorXAveCurrent = 0;
  188. float motorYAveCurrent = 0;
  189. float pvT1AveTemp = 0;
  190. float pvT2AveTemp = 0;
  191. for (uint8_t i = 0; i < CIRC_BUFF_LEN; i++) {
  192. motorXAveCurrent += motorXSensCircBuffer[i];
  193. motorYAveCurrent += motorYSensCircBuffer[i];
  194. #ifdef PV_BOARD
  195. pvT1AveTemp += pvT1CircBuffer[i];
  196. pvT2AveTemp += pvT2CircBuffer[i];
  197. #endif
  198. }
  199. motorXAveCurrent /= CIRC_BUFF_LEN;
  200. motorYAveCurrent /= CIRC_BUFF_LEN;
  201. pvT1AveTemp /= CIRC_BUFF_LEN;
  202. pvT2AveTemp /= CIRC_BUFF_LEN;
  203. if (osMutexAcquire (sensorsInfoMutex, osWaitForever) == osOK) {
  204. if (sensorsInfo.motorXStatus == 1) {
  205. sensorsInfo.motorXAveCurrent = motorXAveCurrent;
  206. if (sensorsInfo.motorXPeakCurrent < motorXCurrentSense) {
  207. sensorsInfo.motorXPeakCurrent = motorXCurrentSense;
  208. }
  209. }
  210. if (sensorsInfo.motorYStatus == 1) {
  211. sensorsInfo.motorYAveCurrent = motorYAveCurrent;
  212. if (sensorsInfo.motorYPeakCurrent < motorYCurrentSense) {
  213. sensorsInfo.motorYPeakCurrent = motorYCurrentSense;
  214. }
  215. }
  216. sensorsInfo.pvTemperature[0] = pvT1AveTemp;
  217. sensorsInfo.pvTemperature[1] = pvT2AveTemp;
  218. osMutexRelease (sensorsInfoMutex);
  219. }
  220. ++circBuffPos;
  221. circBuffPos = circBuffPos % CIRC_BUFF_LEN;
  222. }
  223. }
  224. void LimiterSwitchTask (void* arg) {
  225. LimiterSwitchData limiterSwitchData = { 0 };
  226. limiterSwitchData.gpioPin = GPIO_PIN_8;
  227. for (uint8_t i = 0; i < 6; i++) {
  228. limiterSwitchData.pinState = HAL_GPIO_ReadPin (GPIOD, limiterSwitchData.gpioPin);
  229. osMessageQueuePut (limiterSwitchDataQueue, &limiterSwitchData, 0, 0);
  230. limiterSwitchData.gpioPin = limiterSwitchData.gpioPin << 1;
  231. if (osMutexAcquire (sensorsInfoMutex, osWaitForever) == osOK) {
  232. sensorsInfo.positionXWeak = 1;
  233. sensorsInfo.positionYWeak = 1;
  234. osMutexRelease (sensorsInfoMutex);
  235. }
  236. }
  237. while (pdTRUE) {
  238. osMessageQueueGet (limiterSwitchDataQueue, &limiterSwitchData, 0, osWaitForever);
  239. if (osMutexAcquire (sensorsInfoMutex, osWaitForever) == osOK) {
  240. switch (limiterSwitchData.gpioPin) {
  241. case GPIO_PIN_8:
  242. sensorsInfo.limitYSwitchCenter = limiterSwitchData.pinState == GPIO_PIN_SET ? 1 : 0;
  243. if (sensorsInfo.limitYSwitchCenter == 1)
  244. {
  245. sensorsInfo.currentYPosition = AXE_Y_MIDDLE_VALUE;
  246. sensorsInfo.positionYWeak = 0;
  247. }
  248. break;
  249. case GPIO_PIN_9:
  250. sensorsInfo.limitYSwitchDown = limiterSwitchData.pinState == GPIO_PIN_SET ? 1 : 0;
  251. if (sensorsInfo.limitYSwitchDown == 1)
  252. {
  253. sensorsInfo.currentYPosition = 0;
  254. sensorsInfo.positionYWeak = 0;
  255. }
  256. break;
  257. case GPIO_PIN_10:
  258. sensorsInfo.limitXSwitchCenter = limiterSwitchData.pinState == GPIO_PIN_SET ? 1 : 0;
  259. if (sensorsInfo.limitXSwitchCenter == 1)
  260. {
  261. sensorsInfo.currentXPosition = AXE_X_MIDDLE_VALUE;
  262. sensorsInfo.positionXWeak = 0;
  263. }
  264. break;
  265. case GPIO_PIN_11:
  266. sensorsInfo.limitYSwitchUp = limiterSwitchData.pinState == GPIO_PIN_SET ? 1 : 0;
  267. if (sensorsInfo.limitYSwitchUp == 1)
  268. {
  269. sensorsInfo.currentYPosition = 100;
  270. sensorsInfo.positionYWeak = 0;
  271. }
  272. break;
  273. case GPIO_PIN_12:
  274. sensorsInfo.limitXSwitchUp = limiterSwitchData.pinState == GPIO_PIN_SET ? 1 : 0;
  275. if (sensorsInfo.limitXSwitchUp == 1)
  276. {
  277. sensorsInfo.currentXPosition = 100;
  278. sensorsInfo.positionXWeak = 0;
  279. }
  280. break;
  281. case GPIO_PIN_13:
  282. sensorsInfo.limitXSwitchDown = limiterSwitchData.pinState == GPIO_PIN_SET ? 1 : 0;
  283. if (sensorsInfo.limitXSwitchDown == 1)
  284. {
  285. sensorsInfo.currentXPosition = 0;
  286. sensorsInfo.positionXWeak = 0;
  287. }
  288. break;
  289. default: break;
  290. }
  291. if ((sensorsInfo.limitXSwitchDown == 1) || (sensorsInfo.limitXSwitchUp == 1)) {
  292. sensorsInfo.motorXStatus = MotorControl (&htim3, &motorXYTimerConfigOC, TIM_CHANNEL_1, TIM_CHANNEL_2, motorXTimerHandle, 0, 0, sensorsInfo.limitXSwitchUp, sensorsInfo.limitXSwitchDown);
  293. }
  294. if ((sensorsInfo.limitYSwitchDown == 1) || (sensorsInfo.limitYSwitchUp == 1)) {
  295. sensorsInfo.motorYStatus = MotorControl (&htim3, &motorXYTimerConfigOC, TIM_CHANNEL_3, TIM_CHANNEL_4, motorYTimerHandle, 0, 0, sensorsInfo.limitYSwitchUp, sensorsInfo.limitYSwitchDown);
  296. }
  297. osMutexRelease (sensorsInfoMutex);
  298. }
  299. }
  300. }
  301. void EncoderTask (void* arg) {
  302. EncoderData encoderData = { 0 };
  303. osMessageQueueId_t encoderQueue = (osMessageQueueId_t)arg;
  304. while (pdTRUE) {
  305. osMessageQueueGet (encoderQueue, &encoderData, 0, osWaitForever);
  306. if (osMutexAcquire (sensorsInfoMutex, osWaitForever) == osOK) {
  307. if (encoderData.axe == encoderAxeX) {
  308. if (encoderData.direction == encoderCW) {
  309. sensorsInfo.pvEncoderX += 360.0 / ENCODER_X_IMP_PER_TURN;
  310. } else {
  311. sensorsInfo.pvEncoderX -= 360.0 / ENCODER_X_IMP_PER_TURN;
  312. if(sensorsInfo.pvEncoderX < 0)
  313. {
  314. sensorsInfo.pvEncoderX = 360.0 + sensorsInfo.pvEncoderX;
  315. }
  316. }
  317. sensorsInfo.pvEncoderX = fmodf(sensorsInfo.pvEncoderX, 360.0);
  318. float currentPercentPos = 100 * sensorsInfo.pvEncoderX / MAX_X_AXE_ANGLE;
  319. currentPercentPos = currentPercentPos < 0 ? 0 : currentPercentPos;
  320. sensorsInfo.currentXPosition = currentPercentPos > 100 ? 100 : currentPercentPos;
  321. DbgLEDToggle(DBG_LED2);
  322. } else {
  323. if (encoderData.direction == encoderCW) {
  324. sensorsInfo.pvEncoderY += 360.0 / ENCODER_Y_IMP_PER_TURN;
  325. } else {
  326. sensorsInfo.pvEncoderY -= 360.0 / ENCODER_Y_IMP_PER_TURN;
  327. if(sensorsInfo.pvEncoderY < 0)
  328. {
  329. sensorsInfo.pvEncoderY = 360.0 + sensorsInfo.pvEncoderY;
  330. }
  331. }
  332. sensorsInfo.pvEncoderY = fmodf(sensorsInfo.pvEncoderY, 360.0);
  333. float currentPercentPos = 100 * sensorsInfo.pvEncoderY / MAX_X_AXE_ANGLE;
  334. currentPercentPos = currentPercentPos < 0 ? 0 : currentPercentPos;
  335. sensorsInfo.currentXPosition = currentPercentPos > 100 ? 100 : currentPercentPos;
  336. DbgLEDToggle(DBG_LED3);
  337. }
  338. osMutexRelease (sensorsInfoMutex);
  339. }
  340. }
  341. }