meas_tasks.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313
  1. /*
  2. * meas_tasks.c
  3. *
  4. * Created on: Sep 5, 2024
  5. * Author: jakubski
  6. */
  7. #include "meas_tasks.h"
  8. #include "adc_buffers.h"
  9. #include "measurements.h"
  10. #include "node-red-config.h"
  11. #include "peripherial.h"
  12. #include "cmsis_os.h"
  13. #include "main.h"
  14. #ifdef PV_BOARD
  15. #define VOLTAGES_COUNT 1
  16. #define CURRENTS_COUNT 1
  17. #else
  18. #define VOLTAGES_COUNT 3
  19. #define CURRENTS_COUNT 3
  20. #endif
  21. #define CIRC_BUFF_LEN 10
  22. osThreadId_t adc1MeasTaskHandle = NULL;
  23. osThreadId_t adc2MeasTaskHandle = NULL;
  24. osThreadId_t adc3MeasTaskHandle = NULL;
  25. osThreadId_t limiterSwitchTaskHandle = NULL;
  26. osThreadId_t encoderXTaskHandle = NULL;
  27. osThreadId_t encoderYTaskHandle = NULL;
  28. osMessageQueueId_t adc1MeasDataQueue = NULL;
  29. osMessageQueueId_t adc2MeasDataQueue = NULL;
  30. osMessageQueueId_t adc3MeasDataQueue = NULL;
  31. osMessageQueueId_t limiterSwitchDataQueue = NULL;
  32. osMessageQueueId_t encoderXDataQueue = NULL;
  33. osMessageQueueId_t encoderYDataQueue = NULL;
  34. osMutexId_t vRefmVMutex;
  35. osMutexId_t resMeasurementsMutex;
  36. osMutexId_t sensorsInfoMutex;
  37. osMutexId_t ILxRefMutex;
  38. volatile uint32_t vRefmV = 3000;
  39. RESMeasurements resMeasurements = { 0 };
  40. SesnorsInfo sensorsInfo = { 0 };
  41. uint16_t ILxRef[CURRENTS_COUNT] = { 0 };
  42. extern TIM_HandleTypeDef htim3;
  43. extern TIM_OC_InitTypeDef motorXYTimerConfigOC;
  44. extern osTimerId_t motorXTimerHandle;
  45. extern osTimerId_t motorYTimerHandle;
  46. void MeasTasksInit (void) {
  47. vRefmVMutex = osMutexNew (NULL);
  48. resMeasurementsMutex = osMutexNew (NULL);
  49. sensorsInfoMutex = osMutexNew (NULL);
  50. ILxRefMutex = osMutexNew (NULL);
  51. adc1MeasDataQueue = osMessageQueueNew (8, sizeof (ADC1_Data), NULL);
  52. adc2MeasDataQueue = osMessageQueueNew (8, sizeof (ADC2_Data), NULL);
  53. adc3MeasDataQueue = osMessageQueueNew (8, sizeof (ADC3_Data), NULL);
  54. osThreadAttr_t osThreadAttradc1MeasTask = { 0 };
  55. osThreadAttr_t osThreadAttradc2MeasTask = { 0 };
  56. osThreadAttr_t osThreadAttradc3MeasTask = { 0 };
  57. osThreadAttradc1MeasTask.stack_size = configMINIMAL_STACK_SIZE * 2;
  58. osThreadAttradc1MeasTask.priority = (osPriority_t)osPriorityRealtime;
  59. osThreadAttradc2MeasTask.stack_size = configMINIMAL_STACK_SIZE * 2;
  60. osThreadAttradc2MeasTask.priority = (osPriority_t)osPriorityRealtime;
  61. osThreadAttradc3MeasTask.stack_size = configMINIMAL_STACK_SIZE * 2;
  62. osThreadAttradc3MeasTask.priority = (osPriority_t)osPriorityNormal;
  63. adc1MeasTaskHandle = osThreadNew (ADC1MeasTask, NULL, &osThreadAttradc1MeasTask);
  64. adc2MeasTaskHandle = osThreadNew (ADC2MeasTask, NULL, &osThreadAttradc2MeasTask);
  65. adc3MeasTaskHandle = osThreadNew (ADC3MeasTask, NULL, &osThreadAttradc3MeasTask);
  66. limiterSwitchDataQueue = osMessageQueueNew (8, sizeof (LimiterSwitchData), NULL);
  67. osThreadAttr_t osThreadAttradc1LimiterSwitchTask = { 0 };
  68. osThreadAttradc1LimiterSwitchTask.stack_size = configMINIMAL_STACK_SIZE * 2;
  69. osThreadAttradc1LimiterSwitchTask.priority = (osPriority_t)osPriorityNormal;
  70. limiterSwitchTaskHandle = osThreadNew (LimiterSwitchTask, NULL, &osThreadAttradc1LimiterSwitchTask);
  71. encoderXDataQueue = osMessageQueueNew (8, sizeof (EncoderData), NULL);
  72. encoderYDataQueue = osMessageQueueNew (8, sizeof (EncoderData), NULL);
  73. osThreadAttr_t osThreadAttrEncoderXTask = { 0 };
  74. osThreadAttrEncoderXTask.stack_size = configMINIMAL_STACK_SIZE * 2;
  75. osThreadAttrEncoderXTask.priority = (osPriority_t)osPriorityNormal;
  76. encoderXTaskHandle = osThreadNew (EncoderTask, encoderXDataQueue, &osThreadAttrEncoderXTask);
  77. osThreadAttr_t osThreadAttrEncoderYTask = { 0 };
  78. osThreadAttrEncoderYTask.stack_size = configMINIMAL_STACK_SIZE * 2;
  79. osThreadAttrEncoderYTask.priority = (osPriority_t)osPriorityNormal;
  80. encoderYTaskHandle = osThreadNew (EncoderTask, encoderYDataQueue, &osThreadAttrEncoderYTask);
  81. }
  82. void ADC1MeasTask (void* arg) {
  83. float circBuffer[VOLTAGES_COUNT][CIRC_BUFF_LEN] = { 0 };
  84. float rms[VOLTAGES_COUNT] = { 0 };
  85. ;
  86. ADC1_Data adcData = { 0 };
  87. uint32_t circBuffPos = 0;
  88. float gainCorrection = 1.0;
  89. while (pdTRUE) {
  90. osMessageQueueGet (adc1MeasDataQueue, &adcData, 0, osWaitForever);
  91. #ifdef GAIN_AUTO_CORRECTION
  92. if (osMutexAcquire (vRefmVMutex, osWaitForever) == osOK) {
  93. gainCorrection = (float)vRefmV;
  94. osMutexRelease (vRefmVMutex);
  95. }
  96. gainCorrection = gainCorrection / EXT_VREF_mV;
  97. #endif
  98. for (uint8_t i = 0; i < VOLTAGES_COUNT; i++) {
  99. float val = adcData.adcDataBuffer[i] * deltaADC * U_CHANNEL_CONST * gainCorrection * U_MeasCorrectionData[i].gain + U_MeasCorrectionData[i].offset;
  100. circBuffer[i][circBuffPos] = val;
  101. rms[i] = 0.0;
  102. for (uint8_t c = 0; c < CIRC_BUFF_LEN; c++) {
  103. rms[i] += circBuffer[i][c];
  104. }
  105. rms[i] = rms[i] / CIRC_BUFF_LEN;
  106. if (osMutexAcquire (resMeasurementsMutex, osWaitForever) == osOK) {
  107. if (fabs (resMeasurements.voltagePeak[i]) < fabs (val)) {
  108. resMeasurements.voltagePeak[i] = val;
  109. }
  110. resMeasurements.voltageRMS[i] = rms[i];
  111. resMeasurements.power[i] = resMeasurements.voltageRMS[i] * resMeasurements.currentRMS[i];
  112. osMutexRelease (resMeasurementsMutex);
  113. }
  114. }
  115. ++circBuffPos;
  116. circBuffPos = circBuffPos % CIRC_BUFF_LEN;
  117. if (osMutexAcquire (ILxRefMutex, osWaitForever) == osOK) {
  118. uint8_t refIdx = 0;
  119. for (uint8_t i = (uint8_t)IL1Ref; i <= (uint8_t)IL3Ref; i++) {
  120. ILxRef[refIdx++] = adcData.adcDataBuffer[i];
  121. }
  122. osMutexRelease (ILxRefMutex);
  123. }
  124. float fanFBVoltage = adcData.adcDataBuffer[FanFB] * deltaADC * -4.35 + 12;
  125. if (osMutexAcquire (sensorsInfoMutex, osWaitForever) == osOK) {
  126. sensorsInfo.fanVoltage = fanFBVoltage;
  127. osMutexRelease (sensorsInfoMutex);
  128. }
  129. }
  130. }
  131. void ADC2MeasTask (void* arg) {
  132. float circBuffer[CURRENTS_COUNT][CIRC_BUFF_LEN] = { 0 };
  133. float rms[CURRENTS_COUNT] = { 0 };
  134. ADC2_Data adcData = { 0 };
  135. uint32_t circBuffPos = 0;
  136. float gainCorrection = 1.0;
  137. while (pdTRUE) {
  138. osMessageQueueGet (adc2MeasDataQueue, &adcData, 0, osWaitForever);
  139. if (osMutexAcquire (vRefmVMutex, osWaitForever) == osOK) {
  140. gainCorrection = (float)vRefmV;
  141. osMutexRelease (vRefmVMutex);
  142. }
  143. gainCorrection = gainCorrection / EXT_VREF_mV;
  144. float ref[CURRENTS_COUNT] = { 0 };
  145. if (osMutexAcquire (ILxRefMutex, osWaitForever) == osOK) {
  146. for (uint8_t i = 0; i < CURRENTS_COUNT; i++) {
  147. ref[i] = (float)ILxRef[i];
  148. }
  149. osMutexRelease (ILxRefMutex);
  150. }
  151. for (uint8_t i = 0; i < CURRENTS_COUNT; i++) {
  152. float adcVal = (float)adcData.adcDataBuffer[i];
  153. float val = (adcVal - ref[i]) * deltaADC * I_CHANNEL_CONST * gainCorrection * I_MeasCorrectionData[i].gain + I_MeasCorrectionData[i].offset;
  154. circBuffer[i][circBuffPos] = val;
  155. rms[i] = 0.0;
  156. for (uint8_t c = 0; c < CIRC_BUFF_LEN; c++) {
  157. rms[i] += circBuffer[i][c];
  158. }
  159. rms[i] = rms[i] / CIRC_BUFF_LEN;
  160. if (osMutexAcquire (resMeasurementsMutex, osWaitForever) == osOK) {
  161. if (resMeasurements.currentPeak[i] < val) {
  162. resMeasurements.currentPeak[i] = val;
  163. }
  164. resMeasurements.currentRMS[i] = rms[i];
  165. osMutexRelease (resMeasurementsMutex);
  166. }
  167. }
  168. ++circBuffPos;
  169. circBuffPos = circBuffPos % CIRC_BUFF_LEN;
  170. }
  171. }
  172. void ADC3MeasTask (void* arg) {
  173. float motorXSensCircBuffer[CIRC_BUFF_LEN] = { 0 };
  174. float motorYSensCircBuffer[CIRC_BUFF_LEN] = { 0 };
  175. float pvT1CircBuffer[CIRC_BUFF_LEN] = { 0 };
  176. float pvT2CircBuffer[CIRC_BUFF_LEN] = { 0 };
  177. uint32_t circBuffPos = 0;
  178. ADC3_Data adcData = { 0 };
  179. while (pdTRUE) {
  180. osMessageQueueGet (adc3MeasDataQueue, &adcData, 0, osWaitForever);
  181. uint32_t vRef = __LL_ADC_CALC_VREFANALOG_VOLTAGE (adcData.adcDataBuffer[VrefInt], LL_ADC_RESOLUTION_16B);
  182. if (osMutexAcquire (vRefmVMutex, osWaitForever) == osOK) {
  183. vRefmV = vRef;
  184. osMutexRelease (vRefmVMutex);
  185. }
  186. float motorXCurrentSense = adcData.adcDataBuffer[motorXSense] * deltaADC * 10 / 8.33333;
  187. float motorYCurrentSense = adcData.adcDataBuffer[motorYSense] * deltaADC * 10 / 8.33333;
  188. motorXSensCircBuffer[circBuffPos] = motorXCurrentSense;
  189. motorYSensCircBuffer[circBuffPos] = motorYCurrentSense;
  190. pvT1CircBuffer[circBuffPos] = adcData.adcDataBuffer[pvTemp1] * deltaADC * 45.33333333 - 63;
  191. pvT2CircBuffer[circBuffPos] = adcData.adcDataBuffer[pvTemp2] * deltaADC * 45.33333333 - 63;
  192. float motorXAveCurrent = 0;
  193. float motorYAveCurrent = 0;
  194. float pvT1AveTemp = 0;
  195. float pvT2AveTemp = 0;
  196. for (uint8_t i = 0; i < CIRC_BUFF_LEN; i++) {
  197. motorXAveCurrent += motorXSensCircBuffer[i];
  198. motorYAveCurrent += motorYSensCircBuffer[i];
  199. #ifdef PV_BOARD
  200. pvT1AveTemp += pvT1CircBuffer[i];
  201. pvT2AveTemp += pvT2CircBuffer[i];
  202. #endif
  203. }
  204. motorXAveCurrent /= CIRC_BUFF_LEN;
  205. motorYAveCurrent /= CIRC_BUFF_LEN;
  206. pvT1AveTemp /= CIRC_BUFF_LEN;
  207. pvT2AveTemp /= CIRC_BUFF_LEN;
  208. if (osMutexAcquire (sensorsInfoMutex, osWaitForever) == osOK) {
  209. if (sensorsInfo.motorXStatus == 1) {
  210. sensorsInfo.motorXAveCurrent = motorXAveCurrent;
  211. if (sensorsInfo.motorXPeakCurrent < motorXCurrentSense) {
  212. sensorsInfo.motorXPeakCurrent = motorXCurrentSense;
  213. }
  214. }
  215. if (sensorsInfo.motorYStatus == 1) {
  216. sensorsInfo.motorYAveCurrent = motorYAveCurrent;
  217. if (sensorsInfo.motorYPeakCurrent < motorYCurrentSense) {
  218. sensorsInfo.motorYPeakCurrent = motorYCurrentSense;
  219. }
  220. }
  221. sensorsInfo.pvTemperature[0] = pvT1AveTemp;
  222. sensorsInfo.pvTemperature[1] = pvT2AveTemp;
  223. osMutexRelease (sensorsInfoMutex);
  224. }
  225. ++circBuffPos;
  226. circBuffPos = circBuffPos % CIRC_BUFF_LEN;
  227. }
  228. }
  229. void LimiterSwitchTask (void* arg) {
  230. LimiterSwitchData limiterSwitchData = { 0 };
  231. limiterSwitchData.gpioPin = GPIO_PIN_8;
  232. for (uint8_t i = 0; i < 6; i++) {
  233. limiterSwitchData.pinState = HAL_GPIO_ReadPin (GPIOD, limiterSwitchData.gpioPin);
  234. osMessageQueuePut (limiterSwitchDataQueue, &limiterSwitchData, 0, 0);
  235. limiterSwitchData.gpioPin = limiterSwitchData.gpioPin << 1;
  236. }
  237. while (pdTRUE) {
  238. osMessageQueueGet (limiterSwitchDataQueue, &limiterSwitchData, 0, osWaitForever);
  239. if (osMutexAcquire (sensorsInfoMutex, osWaitForever) == osOK) {
  240. switch (limiterSwitchData.gpioPin) {
  241. case GPIO_PIN_8: sensorsInfo.limitYSwitchCenter = limiterSwitchData.pinState == GPIO_PIN_SET ? 0 : 1; break;
  242. case GPIO_PIN_9: sensorsInfo.limitYSwitchDown = limiterSwitchData.pinState == GPIO_PIN_SET ? 0 : 1; break;
  243. case GPIO_PIN_10: sensorsInfo.limitXSwitchCenter = limiterSwitchData.pinState == GPIO_PIN_SET ? 0 : 1; break;
  244. case GPIO_PIN_11: sensorsInfo.limitYSwitchUp = limiterSwitchData.pinState == GPIO_PIN_SET ? 0 : 1; break;
  245. case GPIO_PIN_12: sensorsInfo.limitXSwitchUp = limiterSwitchData.pinState == GPIO_PIN_SET ? 0 : 1; break;
  246. case GPIO_PIN_13: sensorsInfo.limitXSwitchDown = limiterSwitchData.pinState == GPIO_PIN_SET ? 0 : 1; break;
  247. default: break;
  248. }
  249. if ((sensorsInfo.limitXSwitchDown == 1) || (sensorsInfo.limitXSwitchUp == 1)) {
  250. sensorsInfo.motorXStatus = motorControl (&htim3, &motorXYTimerConfigOC, TIM_CHANNEL_1, TIM_CHANNEL_2, motorXTimerHandle, 0, 0, sensorsInfo.limitXSwitchUp, sensorsInfo.limitXSwitchDown);
  251. }
  252. if ((sensorsInfo.limitYSwitchDown == 1) || (sensorsInfo.limitYSwitchUp == 1)) {
  253. sensorsInfo.motorYStatus = motorControl (&htim3, &motorXYTimerConfigOC, TIM_CHANNEL_3, TIM_CHANNEL_4, motorYTimerHandle, 0, 0, sensorsInfo.limitYSwitchUp, sensorsInfo.limitYSwitchDown);
  254. }
  255. osMutexRelease (sensorsInfoMutex);
  256. }
  257. }
  258. }
  259. void EncoderTask (void* arg) {
  260. EncoderData encoderData = { 0 };
  261. osMessageQueueId_t encoderQueue = (osMessageQueueId_t)arg;
  262. while (pdTRUE) {
  263. osMessageQueueGet (encoderQueue, &encoderData, 0, osWaitForever);
  264. if (osMutexAcquire (sensorsInfoMutex, osWaitForever) == osOK) {
  265. if (encoderData.axe == encoderAxeX) {
  266. if (encoderData.direction == encoderCW) {
  267. sensorsInfo.pvEncoderX += 360.0 / ENCODER_X_IMP_PER_TURN;
  268. } else {
  269. sensorsInfo.pvEncoderX -= 360.0 / ENCODER_X_IMP_PER_TURN;
  270. }
  271. DbgLEDToggle(DBG_LED2);
  272. } else {
  273. if (encoderData.direction == encoderCW) {
  274. sensorsInfo.pvEncoderY += 360.0 / ENCODER_Y_IMP_PER_TURN;
  275. } else {
  276. sensorsInfo.pvEncoderY -= 360.0 / ENCODER_Y_IMP_PER_TURN;
  277. }
  278. DbgLEDToggle(DBG_LED3);
  279. }
  280. osMutexRelease (sensorsInfoMutex);
  281. }
  282. }
  283. }