top.v 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502
  1. /*
  2. * top.v
  3. *
  4. * vim: ts=4 sw=4
  5. *
  6. * Copyright (C) 2019 Sylvain Munaut <tnt@246tNt.com>
  7. * All rights reserved.
  8. *
  9. * BSD 3-clause, see LICENSE.bsd
  10. *
  11. * Redistribution and use in source and binary forms, with or without
  12. * modification, are permitted provided that the following conditions are met:
  13. * * Redistributions of source code must retain the above copyright
  14. * notice, this list of conditions and the following disclaimer.
  15. * * Redistributions in binary form must reproduce the above copyright
  16. * notice, this list of conditions and the following disclaimer in the
  17. * documentation and/or other materials provided with the distribution.
  18. * * Neither the name of the <organization> nor the
  19. * names of its contributors may be used to endorse or promote products
  20. * derived from this software without specific prior written permission.
  21. *
  22. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
  23. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  24. * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  25. * DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
  26. * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  27. * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  28. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  29. * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  30. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  31. * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  32. */
  33. `default_nettype none
  34. module top (
  35. // SPI
  36. inout wire spi_mosi,
  37. inout wire spi_miso,
  38. inout wire spi_clk,
  39. inout wire spi_flash_cs_n,
  40. inout wire spi_ram_cs_n,
  41. // USB
  42. inout wire usb_dp,
  43. inout wire usb_dn,
  44. output wire usb_pu,
  45. // Debug UART
  46. input wire uart_rx,
  47. output wire uart_tx,
  48. // LED
  49. output wire [2:0] rgb,
  50. // Clock
  51. input wire clk_in
  52. );
  53. localparam WB_N = 6;
  54. localparam WB_DW = 32;
  55. localparam WB_AW = 16;
  56. localparam WB_AI = 2;
  57. genvar i;
  58. // Signals
  59. // -------
  60. // Memory bus
  61. wire mem_valid;
  62. wire mem_instr;
  63. wire mem_ready;
  64. wire [31:0] mem_addr;
  65. wire [31:0] mem_rdata;
  66. wire [31:0] mem_wdata;
  67. wire [ 3:0] mem_wstrb;
  68. // RAM
  69. // BRAM
  70. wire [ 7:0] bram_addr;
  71. wire [31:0] bram_rdata;
  72. wire [31:0] bram_wdata;
  73. wire [ 3:0] bram_wmsk;
  74. wire bram_we;
  75. // SPRAM
  76. wire [13:0] spram_addr;
  77. wire [31:0] spram_rdata;
  78. wire [31:0] spram_wdata;
  79. wire [ 3:0] spram_wmsk;
  80. wire spram_we;
  81. // Wishbone
  82. wire [WB_AW-1:0] wb_addr;
  83. wire [WB_DW-1:0] wb_wdata;
  84. wire [WB_DW-1:0] wb_rdata [0:WB_N-1];
  85. wire [(WB_DW*WB_N)-1:0] wb_rdata_flat;
  86. wire [WB_N-1:0] wb_cyc;
  87. wire wb_we;
  88. wire [WB_N-1:0] wb_ack;
  89. // UART
  90. // USB Core
  91. // EP Buffer
  92. wire [ 8:0] ep_tx_addr_0;
  93. wire [31:0] ep_tx_data_0;
  94. wire ep_tx_we_0;
  95. wire [ 8:0] ep_rx_addr_0;
  96. wire [31:0] ep_rx_data_1;
  97. wire ep_rx_re_0;
  98. // Bus interface
  99. wire [11:0] ub_addr;
  100. wire [15:0] ub_wdata;
  101. wire [15:0] ub_rdata;
  102. wire ub_cyc;
  103. wire ub_we;
  104. wire ub_ack;
  105. wire usb_ready;
  106. wire [31:0] usb_rdata;
  107. // SPI
  108. wire [7:0] sb_addr;
  109. wire [7:0] sb_di;
  110. wire [7:0] sb_do;
  111. wire sb_rw;
  112. wire sb_stb;
  113. wire sb_ack;
  114. wire sb_irq;
  115. wire sb_wkup;
  116. wire sio_miso_o, sio_miso_oe, sio_miso_i;
  117. wire sio_mosi_o, sio_mosi_oe, sio_mosi_i;
  118. wire sio_clk_o, sio_clk_oe, sio_clk_i;
  119. wire [3:0] sio_csn_o, sio_csn_oe;
  120. // LEDs
  121. reg [4:0] led_ctrl;
  122. wire [2:0] rgb_pwm;
  123. // Clock / Reset logic
  124. wire clk_24m;
  125. wire clk_48m;
  126. wire rst;
  127. // SoC
  128. // ---
  129. // CPU
  130. picorv32 #(
  131. .PROGADDR_RESET(32'h 0000_0000),
  132. .STACKADDR(32'h 0000_0400),
  133. .BARREL_SHIFTER(0),
  134. .COMPRESSED_ISA(0),
  135. .ENABLE_COUNTERS(0),
  136. .ENABLE_MUL(0),
  137. .ENABLE_DIV(0),
  138. .ENABLE_IRQ(0),
  139. .ENABLE_IRQ_QREGS(0),
  140. .CATCH_MISALIGN(0),
  141. .CATCH_ILLINSN(0)
  142. ) cpu_I (
  143. .clk (clk_24m),
  144. .resetn (~rst),
  145. .mem_valid (mem_valid),
  146. .mem_instr (mem_instr),
  147. .mem_ready (mem_ready),
  148. .mem_addr (mem_addr),
  149. .mem_wdata (mem_wdata),
  150. .mem_wstrb (mem_wstrb),
  151. .mem_rdata (mem_rdata)
  152. );
  153. // Bus interface
  154. bridge #(
  155. .WB_N(WB_N),
  156. .WB_DW(WB_DW),
  157. .WB_AW(WB_AW),
  158. .WB_AI(WB_AI)
  159. ) pb_I (
  160. .pb_addr(mem_addr),
  161. .pb_rdata(mem_rdata),
  162. .pb_wdata(mem_wdata),
  163. .pb_wstrb(mem_wstrb),
  164. .pb_valid(mem_valid),
  165. .pb_ready(mem_ready),
  166. .bram_addr(bram_addr),
  167. .bram_rdata(bram_rdata),
  168. .bram_wdata(bram_wdata),
  169. .bram_wmsk(bram_wmsk),
  170. .bram_we(bram_we),
  171. .spram_addr(spram_addr),
  172. .spram_rdata(spram_rdata),
  173. .spram_wdata(spram_wdata),
  174. .spram_wmsk(spram_wmsk),
  175. .spram_we(spram_we),
  176. .wb_addr(wb_addr),
  177. .wb_wdata(wb_wdata),
  178. .wb_rdata(wb_rdata_flat),
  179. .wb_cyc(wb_cyc),
  180. .wb_we(wb_we),
  181. .wb_ack(wb_ack),
  182. .clk(clk_24m),
  183. .rst(rst)
  184. );
  185. for (i=0; i<WB_N; i=i+1)
  186. assign wb_rdata_flat[i*WB_DW+:WB_DW] = wb_rdata[i];
  187. assign wb_rdata[0] = 0;
  188. assign wb_ack[0] = wb_cyc[0];
  189. // Boot memory
  190. soc_bram #(
  191. .INIT_FILE("boot.hex")
  192. ) bram_I (
  193. .addr(bram_addr),
  194. .rdata(bram_rdata),
  195. .wdata(bram_wdata),
  196. .wmsk(bram_wmsk),
  197. .we(bram_we),
  198. .clk(clk_24m)
  199. );
  200. // Main memory
  201. soc_spram spram_I (
  202. .addr(spram_addr),
  203. .rdata(spram_rdata),
  204. .wdata(spram_wdata),
  205. .wmsk(spram_wmsk),
  206. .we(spram_we),
  207. .clk(clk_24m)
  208. );
  209. // UART
  210. // ----
  211. uart_wb #(
  212. .DIV_WIDTH(12),
  213. .DW(WB_DW)
  214. ) uart_I (
  215. .uart_tx(uart_tx),
  216. .uart_rx(uart_rx),
  217. .bus_addr(wb_addr[1:0]),
  218. .bus_wdata(wb_wdata),
  219. .bus_rdata(wb_rdata[1]),
  220. .bus_cyc(wb_cyc[1]),
  221. .bus_ack(wb_ack[1]),
  222. .bus_we(wb_we),
  223. .clk(clk_24m),
  224. .rst(rst)
  225. );
  226. // SPI
  227. // ---
  228. // Hard-IP
  229. `ifndef SIM
  230. SB_SPI #(
  231. .BUS_ADDR74("0b0000")
  232. ) spi_I (
  233. .SBCLKI(clk_24m),
  234. .SBRWI(sb_rw),
  235. .SBSTBI(sb_stb),
  236. .SBADRI7(sb_addr[7]),
  237. .SBADRI6(sb_addr[6]),
  238. .SBADRI5(sb_addr[5]),
  239. .SBADRI4(sb_addr[4]),
  240. .SBADRI3(sb_addr[3]),
  241. .SBADRI2(sb_addr[2]),
  242. .SBADRI1(sb_addr[1]),
  243. .SBADRI0(sb_addr[0]),
  244. .SBDATI7(sb_di[7]),
  245. .SBDATI6(sb_di[6]),
  246. .SBDATI5(sb_di[5]),
  247. .SBDATI4(sb_di[4]),
  248. .SBDATI3(sb_di[3]),
  249. .SBDATI2(sb_di[2]),
  250. .SBDATI1(sb_di[1]),
  251. .SBDATI0(sb_di[0]),
  252. .MI(sio_miso_i),
  253. .SI(sio_mosi_i),
  254. .SCKI(sio_clk_i),
  255. .SCSNI(1'b1),
  256. .SBDATO7(sb_do[7]),
  257. .SBDATO6(sb_do[6]),
  258. .SBDATO5(sb_do[5]),
  259. .SBDATO4(sb_do[4]),
  260. .SBDATO3(sb_do[3]),
  261. .SBDATO2(sb_do[2]),
  262. .SBDATO1(sb_do[1]),
  263. .SBDATO0(sb_do[0]),
  264. .SBACKO(sb_ack),
  265. .SPIIRQ(sb_irq),
  266. .SPIWKUP(sb_wkup),
  267. .SO(sio_miso_o),
  268. .SOE(sio_miso_oe),
  269. .MO(sio_mosi_o),
  270. .MOE(sio_mosi_oe),
  271. .SCKO(sio_clk_o),
  272. .SCKOE(sio_clk_oe),
  273. .MCSNO3(sio_csn_o[3]),
  274. .MCSNO2(sio_csn_o[2]),
  275. .MCSNO1(sio_csn_o[1]),
  276. .MCSNO0(sio_csn_o[0]),
  277. .MCSNOE3(sio_csn_oe[3]),
  278. .MCSNOE2(sio_csn_oe[2]),
  279. .MCSNOE1(sio_csn_oe[1]),
  280. .MCSNOE0(sio_csn_oe[0])
  281. );
  282. `else
  283. reg [3:0] sim;
  284. assign sb_ack = sb_stb;
  285. assign sb_do = { sim, 4'h8 };
  286. always @(posedge clk_24m)
  287. if (rst)
  288. sim <= 0;
  289. else if (sb_ack & sb_rw)
  290. sim <= sim + 1;
  291. `endif
  292. // IO pads
  293. SB_IO #(
  294. .PIN_TYPE(6'b101001),
  295. .PULLUP(1'b1)
  296. ) spi_io_I[2:0] (
  297. .PACKAGE_PIN ({spi_mosi, spi_miso, spi_clk }),
  298. .OUTPUT_ENABLE({sio_mosi_oe, sio_miso_oe, sio_clk_oe}),
  299. .D_OUT_0 ({sio_mosi_o, sio_miso_o, sio_clk_o }),
  300. .D_IN_0 ({sio_mosi_i, sio_miso_i, sio_clk_i })
  301. );
  302. // Bypass OE for CS_n lines
  303. assign spi_flash_cs_n = sio_csn_o[0];
  304. assign spi_ram_cs_n = sio_csn_o[1];
  305. // Bus interface
  306. assign sb_addr = { 4'h0, wb_addr[3:0] };
  307. assign sb_di = wb_wdata[7:0];
  308. assign sb_rw = wb_we;
  309. assign sb_stb = wb_cyc[2];
  310. assign wb_rdata[2] = { {(WB_DW-8){1'b0}}, wb_cyc[2] ? sb_do : 8'h00 };
  311. assign wb_ack[2] = sb_ack;
  312. // LEDs
  313. // ----
  314. SB_LEDDA_IP led_I (
  315. .LEDDCS(wb_addr[4] & wb_we),
  316. .LEDDCLK(clk_24m),
  317. .LEDDDAT7(wb_wdata[7]),
  318. .LEDDDAT6(wb_wdata[6]),
  319. .LEDDDAT5(wb_wdata[5]),
  320. .LEDDDAT4(wb_wdata[4]),
  321. .LEDDDAT3(wb_wdata[3]),
  322. .LEDDDAT2(wb_wdata[2]),
  323. .LEDDDAT1(wb_wdata[1]),
  324. .LEDDDAT0(wb_wdata[0]),
  325. .LEDDADDR3(wb_addr[3]),
  326. .LEDDADDR2(wb_addr[2]),
  327. .LEDDADDR1(wb_addr[1]),
  328. .LEDDADDR0(wb_addr[0]),
  329. .LEDDDEN(wb_cyc[3]),
  330. .LEDDEXE(led_ctrl[1]),
  331. .PWMOUT0(rgb_pwm[0]),
  332. .PWMOUT1(rgb_pwm[1]),
  333. .PWMOUT2(rgb_pwm[2]),
  334. .LEDDON()
  335. );
  336. SB_RGBA_DRV #(
  337. .CURRENT_MODE("0b1"),
  338. .RGB0_CURRENT("0b000001"),
  339. .RGB1_CURRENT("0b000001"),
  340. .RGB2_CURRENT("0b000001")
  341. ) rgb_drv_I (
  342. .RGBLEDEN(led_ctrl[2]),
  343. .RGB0PWM(rgb_pwm[0]),
  344. .RGB1PWM(rgb_pwm[1]),
  345. .RGB2PWM(rgb_pwm[2]),
  346. .CURREN(led_ctrl[3]),
  347. .RGB0(rgb[0]),
  348. .RGB1(rgb[1]),
  349. .RGB2(rgb[2])
  350. );
  351. always @(posedge clk_24m or posedge rst)
  352. if (rst)
  353. led_ctrl <= 0;
  354. else if (wb_cyc[3] & ~wb_addr[4] & wb_we)
  355. led_ctrl <= wb_wdata[4:0];
  356. assign wb_rdata[3] = { WB_DW{1'b0} };
  357. assign wb_ack[3] = wb_cyc[3];
  358. // USB Core
  359. // --------
  360. // Core
  361. usb #(
  362. .EPDW(32)
  363. ) usb_I (
  364. .pad_dp(usb_dp),
  365. .pad_dn(usb_dn),
  366. .pad_pu(usb_pu),
  367. .ep_tx_addr_0(ep_tx_addr_0),
  368. .ep_tx_data_0(ep_tx_data_0),
  369. .ep_tx_we_0(ep_tx_we_0),
  370. .ep_rx_addr_0(ep_rx_addr_0),
  371. .ep_rx_data_1(ep_rx_data_1),
  372. .ep_rx_re_0(ep_rx_re_0),
  373. .ep_clk(clk_24m),
  374. .bus_addr(ub_addr),
  375. .bus_din(ub_wdata),
  376. .bus_dout(ub_rdata),
  377. .bus_cyc(ub_cyc),
  378. .bus_we(ub_we),
  379. .bus_ack(ub_ack),
  380. .clk(clk_48m),
  381. .rst(rst)
  382. );
  383. // Cross clock bridge
  384. xclk_wb #(
  385. .DW(16),
  386. .AW(12)
  387. ) wb_48m_xclk_I (
  388. .s_addr(wb_addr[11:0]),
  389. .s_wdata(wb_wdata),
  390. .s_rdata(wb_rdata[4][15:0]),
  391. .s_cyc(wb_cyc[4]),
  392. .s_ack(wb_ack[4]),
  393. .s_we(wb_we),
  394. .s_clk(clk_24m),
  395. .m_addr(ub_addr),
  396. .m_wdata(ub_wdata),
  397. .m_rdata(ub_rdata),
  398. .m_cyc(ub_cyc),
  399. .m_ack(ub_ack),
  400. .m_we(ub_we),
  401. .m_clk(clk_48m),
  402. .rst(rst)
  403. );
  404. assign wb_rdata[4][31:16] = 16'h0000;
  405. // EP buffer interface
  406. always @(posedge clk_24m)
  407. wb_ack[5] <= wb_cyc[5] & ~wb_ack[5];
  408. assign ep_tx_addr_0 = wb_addr[8:0];
  409. assign ep_tx_data_0 = wb_wdata;
  410. assign ep_tx_we_0 = wb_cyc[5] & ~wb_ack[5] & wb_we;
  411. assign ep_rx_addr_0 = wb_addr[8:0];
  412. assign ep_rx_re_0 = 1'b1;
  413. assign wb_rdata[5] = wb_cyc[5] ? ep_rx_data_1 : 32'h00000000;
  414. // Clock / Reset
  415. // -------------
  416. `ifdef SIM
  417. reg clk_48m_s = 1'b0;
  418. reg clk_24m_s = 1'b0;
  419. reg rst_s = 1'b1;
  420. always #10.42 clk_48m_s <= !clk_48m_s;
  421. always #20.84 clk_24m_s <= !clk_24m_s;
  422. initial begin
  423. #200 rst_s = 0;
  424. end
  425. assign clk_48m = clk_48m_s;
  426. assign clk_24m = clk_24m_s;
  427. assign rst = rst_s;
  428. `else
  429. sysmgr sys_mgr_I (
  430. .clk_in(clk_in),
  431. .rst_in(1'b0),
  432. .clk_48m(clk_48m),
  433. .clk_24m(clk_24m),
  434. .rst_out(rst)
  435. );
  436. `endif
  437. endmodule // top